FungiTastic: A multi-modal dataset and benchmark for image categorization

23 May 2024 (modified: 13 Nov 2024)Submitted to NeurIPS 2024 Track Datasets and BenchmarksEveryoneRevisionsBibTeXCC BY 4.0
Keywords: image classification, fine grained visual categorization, multi-modal, open-set recognition, species identification, domain shift, segmentation, few-shot learning
Abstract: We introduce a new, highly challenging benchmark and a dataset -- FungiTastic -- based on data continuously collected over a twenty-year span. The dataset originates in fungal records labeled and curated by experts. It consists of about 350k multi-modal observations that include more than 650k photographs from 5k fine-grained categories and diverse accompanying information, e.g., acquisition metadata, satellite images, and body part segmentation. FungiTastic is the only benchmark that includes a test set with partially DNA-sequenced ground truth of unprecedented label reliability. The benchmark is designed to support (i) standard close-set classification, (ii) open-set classification, (iii) multi-modal classification, (iv) few-shot learning, (v) domain shift, and many more. We provide baseline methods tailored for almost all the use-cases. We provide a multitude of ready-to-use pre-trained models on HuggingFace and a framework for model training. A comprehensive documentation describing the dataset features and the baselines are available at \href{https://sulc.github.io/DanishFungi2024/}{GitHub} and Kaggle.
Supplementary Material: zip
Flagged For Ethics Review: true
Submission Number: 709
Loading