Task adaptation by biologically inspired stochastic comodulation

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: computational neuroscience, stochastic gain modulation, attention, task fine-tuning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Brain representations must strike a balance between generalizability and adaptability. Neural codes capture general statistical regularities in the world, while dynamically adjusting to reflect current goals. One aspect of this adaptation is stochastically co-modulating neurons' gains based on their task relevance. These fluctuations then propagate downstream to guide decision making. Here, we test the computational viability of such a scheme in the context of multi-task learning. We show that fine-tuning convolutional networks by stochastic modulation improves on deterministic gain increases, achieving state-of-the-art results on the CelebA dataset. To better understand the mechanisms supporting this improvement, we explore how fine-tuning performance is affected by architecture using Cifar-100. Overall, our results suggest that stochastic comodulation can significantly enhance learning efficiency and performance in multi-task learning, without additional learnable parameters. This offers a promising new direction for developing more flexible and robust intelligent systems.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3879
Loading