Sparse Offline Reinforcement Learning with Corruption Robustness

Published: 03 Feb 2026, Last Modified: 03 Feb 2026AISTATS 2026 PosterEveryoneRevisionsBibTeXCC BY 4.0
TL;DR: We study offline sparse RL under adversarial corruption and weak coverage. We show pessimistic LSVI fails in this regime, and propose a sparsity-aware actor–critic framework that achieves meaningful guarantees when $d > N$.
Abstract: We investigate robustness to strong data corruption in offline sparse reinforcement learning (RL). In our setting, an adversary may arbitrarily perturb a fraction of the collected trajectories from a high-dimensional but sparse Markov decision process, and our goal is to estimate a near-optimal policy. The main challenge is that, in the high-dimensional regime where the number of samples $N$ is smaller than the feature dimension $d$, exploiting sparsity is essential for obtaining non-vacuous guarantees but has not been systematically studied in offline RL. We analyse the problem under uniform coverage and sparse single-concentrability assumptions. While Least Square Value Iteration (LSVI), a standard approach for robust offline RL, performs well under uniform coverage, we show that integrating sparsity into LSVI is unnatural, and its analysis may break down due to overly pessimistic bonuses. To overcome this, we propose actor–critic methods with sparse robust estimator oracles, which avoid the use of pointwise pessimistic bonuses and provide the first non-vacuous guarantees for sparse offline RL under single-policy concentrability coverage. Moreover, we extend our results to the contaminated setting and show that our algorithm remains robust under strong contamination. Our results provide the first non-vacuous guarantees in high-dimensional sparse MDPs with single-policy concentrability coverage and corruption, showing that learning near-optimal policy remains possible in regimes where traditional robust offline RL techniques may fail.
Submission Number: 732
Loading