Resnet in Resnet: Generalizing Residual ArchitecturesDownload PDF

29 Nov 2024 (modified: 18 Feb 2016)ICLR 2016Readers: Everyone
Abstract: ResNets have recently achieved state-of-the-art results on challenging computer vision tasks. In this paper, we create a novel architecture that improves ResNets by adding the ability to forget and by making the residuals more expressive, yielding excellent results. ResNet in ResNet outperforms architectures with similar amounts of augmentation on CIFAR-10 and establishes a new state-of-the-art on CIFAR-100.
Conflicts: enlitic.com, ucsf.edu
7 Replies

Loading