Tracking objects that change in appearance with phase synchrony

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Object tracking, human psychophysics, computational neuroscience
TL;DR: The phase synchronization of neuronal populations is a computational mechanism for tracking objects as their appearances morph over time.
Abstract: Objects we encounter often change appearance as we interact with them. Changes in illumination (shadows), object pose, or the movement of non-rigid objects can drastically alter available image features. How do biological visual systems track objects as they change? One plausible mechanism involves attentional mechanisms for reasoning about the locations of objects independently of their appearances --- a capability that prominent neuroscience theories have associated with computing through neural synchrony. Here, we describe a novel deep learning circuit that can learn to precisely control attention to features separately from their location in the world through neural synchrony: the complex-valued recurrent neural network (CV-RNN). Next, we compare object tracking in humans, the CV-RNN, and other deep neural networks (DNNs), using FeatureTracker: a large-scale challenge that asks observers to track objects as their locations and appearances change in precisely controlled ways. While humans effortlessly solved FeatureTracker, state-of-the-art DNNs did not. In contrast, our CV-RNN behaved similarly to humans on the challenge, providing a computational proof-of-concept for the role of phase synchronization as a neural substrate for tracking appearance-morphing objects as they move about.
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4875
Loading