Abstract: Recently, statistical topic modeling has been widely applied in text mining and knowledge management due to its powerful ability. A topic, as a probability distribution over words, is usually difficult to be understood. A common, major challenge in applying such topic models to other knowledge management problem is to accurately interpret the meaning of each topic. Topic labeling, as a major interpreting method, has attracted significant attention recently. However, previous works simply treat topics individually without considering the hierarchical relation among topics, and less attention has been paid to creating a good hierarchical topic descriptors for a hierarchy of topics. In this paper, we propose two effective algorithms that automatically assign concise labels to each topic in a hierarchy by exploiting sibling and parent-child relations among topics. The experimental results show that the inter-topic relation is effective in boosting topic labeling accuracy and the proposed algorithms can generate meaningful topic labels that are useful for interpreting the hierarchical topics.
Loading