Self-supervised debiasing using low rank regularization

22 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Debiasing, spurious correlation, self-supervised learning
TL;DR: We unveil bias-rank relationships and design a self-supervised debiasing framework.
Abstract: Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability. While most existing debiasing methods require full supervision on either spurious attributes or target labels, training a debiased model from a limited amount of both annotations is still an open question. To address this issue, we investigate an interesting phenomenon using the spectral analysis of latent representations: spuriously correlated attributes make neural networks inductively biased towards encoding lower effective rank representations. We also show that a rank regularization can amplify this bias in a way that encourages highly correlated features. Leveraging these findings, we propose a self-supervised debiasing framework potentially compatible with unlabeled samples. Specifically, we first pretrain a biased encoder in a self-supervised manner with the rank regularization, serving as a semantic bottleneck to enforce the encoder to learn the spuriously correlated attributes. This biased encoder is then used to discover and upweight bias-conflicting samples in a downstream task, serving as a boosting to effectively debias the main model. Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines and, in some cases, even outperforms state-of-the-art supervised debiasing approaches.
Supplementary Material: zip
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5257
Loading