Almost Sure Convergence of Average Reward Temporal Difference Learning

25 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: reinforcement learning, temporal difference learning, average reward
TL;DR: We provide the first proof of almost sure convergence of tabular average reward TD using a novel result in stochastic Krasnoselskii-Mann iterations.
Abstract: Tabular average reward Temporal Difference (TD) learning is perhaps the simplest and the most fundamental policy evaluation algorithm in average reward reinforcement learning. After at least 25 years since its discovery, we are finally able to provide a long-awaited almost sure convergence analysis. Namely, we are the first to prove that, under very mild conditions, tabular average reward TD converges almost surely to a sample path dependent fixed point. Key to this success is a new general stochastic approximation result concerning nonexpansive mappings with Markovian and additive noise, built on recent advances in stochastic Krasnoselskii-Mann iterations.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5024
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview