Robust Multimodal Depth Estimation using Transformer based Generative Adversarial NetworksOpen Website

Published: 01 Jan 2022, Last Modified: 15 May 2023ACM Multimedia 2022Readers: Everyone
Abstract: Accurately measuring the absolute depth of every pixel captured by an imaging sensor is of critical importance in real-time applications such as autonomous navigation, augmented reality and robotics. In order to predict dense depth, a general approach is to fuse sensor inputs from different modalities such as LiDAR, camera and other time-of-flight sensors. LiDAR and other time-of-flight sensors provide accurate depth data but are quite sparse, both spatially and temporally. To augment missing depth information, generally RGB guidance is leveraged due to its high resolution information. Due to the reliance on multiple sensor modalities, design for robustness and adaptation is essential. In this work, we propose a transformer-like self-attention based generative adversarial network to estimate dense depth using RGB and sparse depth data. We introduce a novel training recipe for making the model robust so that it works even when one of the input modalities is not available. The multi-head self-attention mechanism can dynamically attend to most salient parts of the RGB image or corresponding sparse depth data producing the most competitive results. Our proposed network also requires less memory for training and inference compared to other existing heavily residual connection based convolutional neural networks, making it more suitable for resource-constrained edge applications. The source code is available at: https://github.com/kocchop/robust-multimodal-fusion-gan
0 Replies

Loading