ParetoFlow: Guided Flows in Multi-Objective Optimization

ICLR 2025 Conference Submission442 Authors

13 Sept 2024 (modified: 16 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multi-objective optimization; flow matching; classifier guidance.
TL;DR: In offline multi-objective optimization, we introduce a ParetoFlow method, specifically designed to guide flow sampling to approximate the Pareto front.
Abstract: In offline multi-objective optimization (MOO), we leverage an offline dataset of designs and their associated labels to simultaneously minimize multiple objectives. This setting more closely mirrors complex real-world problems compared to single-objective optimization. Recent works mainly employ evolutionary algorithms and Bayesian optimization, with limited attention given to the generative modeling capabilities inherent in such data. In this study, we explore generative modeling in offline MOO through flow matching, noted for its effectiveness and efficiency. We introduce \textit{ParetoFlow}, specifically designed to guide flow sampling to approximate the Pareto front. Traditional predictor~(classifier) guidance is inadequate for this purpose because it models only a single objective. In response, we propose a \textit{multi-objective predictor guidance} module that assigns each sample a weight vector, representing a weighted distribution across multiple objective predictions. A local filtering scheme is introduced to address non-convex Pareto fronts. These weights uniformly cover the entire objective space, effectively directing sample generation towards the Pareto front. Since distributions with similar weights tend to generate similar samples, we introduce a \textit{neighboring evolution} module to foster knowledge sharing among neighboring distributions. This module generates offspring from these distributions, and selects the most promising one for the next iteration. Our method achieves state-of-the-art performance across various tasks. Our code is available.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 442
Loading