Fragment and Geometry Aware Tokenization of Molecules for Structure-Based Drug Design Using Language Models

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Generative models, language models, molecule tokenization, structure-based drug design, fragment
Abstract: Structure-based drug design (SBDD) is crucial for developing specific and effective therapeutics against protein targets but remains challenging due to complex protein-ligand interactions and vast chemical space. Although language models (LMs) have excelled in natural language processing, their application in SBDD is underexplored. To bridge this gap, we introduce a method, known as Frag2Seq, to apply LMs to SBDD by generating molecules in a fragment-based manner in which fragments correspond to functional modules. We transform 3D molecules into fragment-informed sequences using $SE(3)$-equivariant molecule and fragment local frames, extracting $SE(3)$-invariant sequences that preserve geometric information of 3D fragments. Furthermore, we incorporate protein pocket embeddings obtained from a pre-trained inverse folding model into the LMs via cross-attention to capture protein-ligand interaction, enabling effective target-aware molecule generation. Benefiting from employing LMs with fragment-based generation and effective protein context encoding, our model achieves the best performance on binding vina score and chemical properties such as QED and Lipinski, which shows our model’s efficacy in generating drug-like ligands with higher binding affinity against target proteins. Moreover, our method also exhibits higher sampling efficiency compared to atom-based autoregressive and diffusion baselines with at most $\times 300$ speedup. The code will be made publicly available at https://github.com/divelab/AIRS/tree/main/OpenMI/Frag2Seq.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5196
Loading