Abstract: Author summary The voxel rate of imaging systems ultimately sets the limit on the speed of data acquisition. These limits often mean that only a small fraction of the activity of large neuronal populations can be observed at high spatio-temporal resolution. For imaging of very large populations with single cell resolution, temporal resolution is typically sacrificed. Here we propose a multi-scale approach to achieve single cell precision using fast imaging at reduced spatial resolution. In the first phase the spatial location and shape of each neuron is obtained at standard spatial resolution; in the second phase imaging is performed at much lower spatial resolution. We show that we can apply a demixing algorithm to accurately recover each neuron’s activity from the low-resolution data by exploiting the high-resolution cellular maps estimated in the first imaging phase. Thus by decreasing the spatial resolution in the second phase, we can compress the video data significantly, and potentially acquire images over an order-of-magnitude larger area, or image at significantly higher temporal resolution, with minimal loss in accuracy of the recovered neuronal activity. We evaluate this approach on real data from light-sheet and 2-photon calcium imaging.
0 Replies
Loading