Guiding Federated Learning with Inferenced Formal Logic PropertiesOpen Website

Published: 01 Jan 2023, Last Modified: 14 May 2023ICCPS 2023Readers: Everyone
Abstract: Recent progressions in federated learning (FL) have facilitated the development of decentralized collaborative Internet-of-Things (IoT) applications. However, data-driven FL algorithms face the challenge of heterogeneity in participating IoT devices, including their deployment environment and calibration settings. Fail to follow these device-specific properties can degenerate the model performance. To address this issue, we present FedSTL in this poster abstract, which is a two-staged personalized FL framework with clustering for sequential prediction tasks in IoT. FedSTL first identifies client properties as Signal Temporal Logic (STL) specifications. Then, a partitioning component of FedSTL associates each client to an aggregation center, while the framework continues to infer properties for the cluster. At the training stage, both cluster and client models are encouraged to follow customized properties to achieve a hierarchical property enhancing strategy. Further, we show preliminary results of FedSTL in this poster abstract under a synthetic multitask IoT environment and a real-world traffic prediction scenario.
0 Replies

Loading