Unsupervised 3D Object Learning through Neuron Activity aware PlasticityDownload PDF

Published: 01 Feb 2023, Last Modified: 22 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Hebbian learning
Abstract: We present an unsupervised deep learning model for 3D object classification. Conventional Hebbian learning, a well-known unsupervised model, suffers from loss of local features leading to reduced performance for tasks with complex geometric objects. We present a deep network with a novel Neuron Activity Aware (NeAW) Hebbian learning rule that dynamically switches the neurons to be governed by Hebbian learning or anti-Hebbian learning, depending on its activity. We analytically show that NeAW Hebbian learning relieves the bias in neuron activity, allowing more neurons to attend to the representation of the 3D objects. Empirical results show that the NeAW Hebbian learning outperforms other variants of Hebbian learning and shows higher accuracy over fully supervised models when training data is limited.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
Supplementary Material: zip
29 Replies

Loading