G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: diffusion model, discrete diffusion model, inverse problems, categorical data
TL;DR: A training-free inverse problem solver that leverages discrete diffusion models as priors.
Abstract: Recent literature has effectively utilized diffusion models trained on continuous variables as priors for solving inverse problems. Notably, discrete diffusion models with discrete latent codes have shown strong performance, particularly in modalities suited for discrete compressed representations, such as image and motion generation. However, their discrete and non-differentiable nature has limited their application to inverse problems formulated in continuous spaces. This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors. We overcome these limitations by approximating the true posterior distribution with a variational distribution constructed from categorical distributions and continuous relaxation techniques. Furthermore, we employ a star-shaped noise process to mitigate the drawbacks of traditional discrete diffusion models with absorbing states, demonstrating that our method performs comparably to continuous diffusion techniques. To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9438
Loading