Continual Learning of Language Models Download PDF

Published: 01 Feb 2023, 19:23, Last Modified: 28 Feb 2023, 19:55ICLR 2023 posterReaders: Everyone
Keywords: Continual learning, Domain-adaptive Pretraining, Post-training
TL;DR: This paper proposes a continual post-training method based on soft-masking to learn a sequence of unlabeled domain corpora to adapt a language model to improve the end-task performances in these domains.
Abstract: Language models (LMs) have been instrumental for the rapid advance of natural language processing. This paper studies continual learning of LMs, in particular, continual domain-adaptive pre-training (or continual DAP-training). Existing research has shown that further pre-training an LM using a domain corpus to adapt the LM to the domain can improve the end-task performance in the domain. This paper proposes a novel method to continually DAP-train an LM with a sequence of unlabeled domain corpora to adapt the LM to these domains to improve their endtask performances. The key novelty of our method is a soft-masking mechanism that directly controls the update to the LM. A novel proxy is also proposed to preserve the general knowledge in the original LM. Additionally, it contrasts the representations of the previously learned domain knowledge (including the general knowledge in the pre-trained LM) and the knowledge from the current full network to achieve knowledge integration. The method not only overcomes catastrophic forgetting, but also achieves knowledge transfer to improve end-task performances. Empirical evaluation demonstrates the effectiveness of the proposed method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
22 Replies