GZOO: Black-Box Node Injection Attack on Graph Neural Networks via Zeroth-Order Optimization

Published: 01 Jan 2025, Last Modified: 21 Jan 2025IEEE Trans. Knowl. Data Eng. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The ubiquity of Graph Neural Networks (GNNs) emphasizes the imperative to assess their resilience against node injection attacks, a type of evasion attacks that impact victim models by injecting nodes with fabricated attributes and structures. However, prevailing attacks face two primary limitations: (1) Sequential construction of attributes and structures results in suboptimal outcomes as structure information is overlooked during attribute construction and vice versa. (2) In black-box scenarios, where attackers lack access to victim model architecture and parameters, reliance on surrogate models degrades performance due to architectural discrepancies. To overcome these limitations, we introduce GZOO, a black-box node injection attack that leverages an adversarial graph generator, compromising both attribute and structure sub-generators. This integration crafts optimal attributes and structures by considering their mutual information, enhancing their influence when aggregating information from injected nodes. Furthermore, GZOO proposes a zeroth-order optimization algorithm leveraging prediction results from victim models to estimate gradients for updating generator parameters, eliminating the necessity to train surrogate models. Across sixteen datasets, GZOO significantly outperforms state-of-the-art attacks, achieving remarkable effectiveness and robustness. Notably, on the Cora dataset with the GCN model, GZOO achieves an impressive 95.69% success rate, surpassing the maximum 66.01% achieved by baselines.
Loading