Keywords: Masked Language Models, Formal Concept Analysis, Interpretability
TL;DR: We investigate the conceptualization of language models from the pespective of formal concept analysis and discuss the inductive bias of masked language models in lattice structure learning.
Abstract: Pretrained masked language models (MLMs) have demonstrated an impressive capability to comprehend and encode conceptual knowledge, revealing a lattice structure among concepts. This raises a critical question: how does this conceptualization emerge from MLM pretraining? In this paper, we explore this problem from the perspective of Formal Concept Analysis (FCA), a mathematical framework that derives concept lattices from the observations of object-attribute relationships. We show that the MLM's objective implicitly learns a formal context that describes objects, attributes, and their dependencies, which enables the reconstruction of a concept lattice through FCA. We propose a novel framework for concept lattice construction from pretrained MLMs and investigate the origin of the inductive biases of MLMs in lattice structure learning. Our framework differs from previous work because it does not rely on human-defined concepts and allows for discovering "latent" concepts that extend beyond human definitions. We create three datasets for evaluation, and the empirical results verify our hypothesis.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7923
Loading