Learning dynamical human-joint affinity for 3d pose estimation in videosDownload PDF

29 Oct 2023OpenReview Archive Direct UploadReaders: Everyone
Abstract: Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation capacity of GCN to tackle complex spatio-temporal pose variations in videos. To alleviate this problem, we propose a novel Dynamical Graph Network (DG-Net), which can dynamically identify human-joint affinity, and estimate 3D pose by adaptively learning spatial/temporal joint relations from videos. Different from traditional graph convolution, we introduce Dynamical Spatial/Temporal Graph convolution (DSG/DTG) to discover spatial/temporal human-joint affinity for each video exemplar, depending on spatial distance/temporal movement similarity between human joints in this video. Hence, they can effectively understand which joints are spatially closer and/or have consistent motion.
0 Replies

Loading