Abstract: Global regression assumes that a single model adequately describes all parts of a study region. However, the heterogeneity in the data may be sufficiently strong that relationships between variables can not be spatially constant. In addition, the factors involved are often sufficiently complex that it is difficult to identify them in the form of explanatory variables. As a result Geographically Weighted Regression (GWR) was introduced as a tool for the modeling of non-stationary spatial data. Using kernel functions, the GWR methodology allows the model parameters to vary spatially and produces non-parametric surfaces of their estimates. To model count data with overdispersion, it is more appropriate to use a negative binomial distribution instead of a Poisson distribution. Therefore, we propose the Geographically Weighted Negative Binomial Regression (GWNBR) method for the modeling of data with overdispersion. The results obtained using simulated and real data show the superiority of this method for the modeling of non-stationary count data with overdispersion compared with competing models, such as global regressions, e.g., Poisson and negative binomial and Geographically Weighted Poisson Regression (GWPR). Moreover, we illustrate that these competing models are special cases of the more robust model GWNBR.
Loading