Jogging the Memory of Unlearned Models Through Targeted Relearning Attacks

Published: 03 Jul 2024, Last Modified: 18 Jul 2024ICML 2024 FM-Wild Workshop PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Unlearning, Large Language Model
Abstract: Machine unlearning is a promising approach to mitigate undesirable memorization of training data in ML models. However, in this work we show that existing approaches for unlearning in LLMs are surprisingly susceptible to a simple set of targeted relearning attacks. With access to only a small and potentially loosely related set of data, we find that we can ‘jog’ the memory of unlearned models to reverse the effects of unlearning. We formalize this unlearning-relearning pipeline, explore the attack across three popular unlearning benchmarks, and discuss future directions and guidelines that result from our study.
Submission Number: 103
Loading