Multi-Resolution Diffusion Models for Time Series Forecasting

Published: 16 Jan 2024, Last Modified: 24 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: diffusion model, time series, multiscale
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The diffusion model has been successfully used in many computer vision applications, such as text-guided image generation and image-to-image translation. Recently, there have been attempts on extending the diffusion model for time series data. However, these extensions are fairly straightforward and do not utilize the unique properties of time series data. As different patterns are usually exhibited at multiple scales of a time series, we in this paper leverage this multi-resolution temporal structure and propose the multi-resolution diffusion model (mr-Diff). By using the seasonal-trend decomposition, we sequentially extract fine-to-coarse trends from the time series for forward diffusion. The denoising process then proceeds in an easy-to-hard non-autoregressive manner. The coarsest trend is generated first. Finer details are progressively added, using the predicted coarser trends as condition variables. Experimental results on nine real-world time series datasets demonstrate that mr-Diff outperforms state-of-the-art time series diffusion models. It is also better than or comparable across a wide variety of advanced time series prediction models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 4109
Loading