HeteGraph-Mamba: Heterogeneous Graph Learning via Selective State Space Model

26 Sept 2024 (modified: 20 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: graph neural network, state space model
TL;DR: a heterogeneous graph mamba network (HGMN) as the first exploration in leveraging the powerful selective state space models (SSSMs) for heterogeneous graph learning.
Abstract: We propose a heterogeneous graph mamba network (HGMN) as the first exploration in leveraging the selective state space models (SSSMs) for heterogeneous graph learning. Compared with the literature, our HGMN overcomes two major challenges: (i) capturing long-range dependencies among heterogeneous nodes and (ii) adapting SSSMs to heterogeneous graph data. Our key contribution is a general graph architecture that can solve heterogeneous nodes in real-world scenarios, followed an efficient flow. Methodologically, we introduce a two-level efficient tokenization approach that first captures long-range dependencies within identical node types, and subsequently across all node types. Empirically, we conduct comparisons between our framework and 19 state-of-the-art methods on the heterogeneous benchmarks. The extensive comparisons demonstrate that our framework outperforms other methods in both the accuracy and efficiency dimensions.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5526
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview