Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Protein Design, Graph, Finetuning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Recent studies have shown competitive performance in protein inverse folding, while most of them disregard the importance of predictive confidence, fail to cover the vast protein space, and do not incorporate common protein knowledge. Given the great success of pretrained models on diverse protein-related tasks and the fact that recovery is highly correlated with confidence, we wonder whether this knowledge can push the limits of protein design further. As a solution, we propose a knowledge-aware module that refines low-quality residues. We also introduce a memory-retrieval mechanism to save more than 50\% of the training time. We extensively evaluate our proposed method on the CATH, TS50, TS500, and PDB datasets and our results show that our KW-Design method outperforms the previous PiFold method by approximately 9\% on the CATH dataset. KW-Design is the first method that achieves 60+\% recovery on all these benchmarks. We also provide additional analysis to demonstrate the effectiveness of our proposed method. The code is publicly available via \href{https://github.com/A4Bio/ProteinInvBench}{GitHub}.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 4286
Loading