MotifDisco: Motif Causal Discovery For Time Series Motifs

23 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: motif, causality, causal discovery, time series, graph neural network, glucose
TL;DR: MotifDisco is a novel causal discovery framework to learn causal relations amongst motifs from time series traces
Abstract: Many time series, particularly health data streams, can be best understood as a sequence of phenomenon or events, which we call motifs. A time series motif is a short trace segment which may implicitly capture an underlying phenomenon within the time series. Specifically, we focus on glucose traces collected from continuous glucose monitors (CGMs), which inherently contain motifs representing underlying human behaviors such as eating and exercise. The ability to identify and quantify causal relationships amongst motifs can provide a mechanism to better understand and represent these patterns, useful for improving deep learning and generative models and for advanced technology development (e.g., personalized coaching and artificial insulin delivery systems). However, no previous work has developed causal discovery methods for time series motifs. Therefore, in this paper we develop MotifDisco (motif disco-very of causality), a novel causal discovery framework to learn causal relations amongst motifs from time series traces. We formalize a notion of Motif Causality (MC), inspired from Granger Causality and Transfer Entropy, and develop a Graph Neural Network-based framework that learns causality between motifs by solving an unsupervised link prediction problem. We also integrate MC with three model use cases of forecasting, anomaly detection and clustering, to showcase the use of MC as a building block for other downstream tasks. Finally, we evaluate our framework and find that Motif Causality provides a significant performance improvement in all use cases.
Primary Area: causal reasoning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3172
Loading