Canonic Signed Spike Coding for Efficient Spiking Neural Networks

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Spiking neural network, Spike coding scheme, Stepwise weighted spike
Abstract: Spiking Neural Networks (SNNs) seek to mimic the spiking behavior of biological neurons and are expected to play a key role in the advancement of neural computing and artificial intelligence. The conversion of Artificial Neural Networks (ANNs) to SNNs is the most widely used training method, which ensures that the resulting SNNs perform comparably to ANNs on large-scale datasets. The efficiency of these conversion-based SNNs is often determined by the neural coding schemes. Current schemes typically use spike count or timing for encoding, which is linearly related to ANN activations and increases the required number of time steps. To address this limitation, we propose a novel Canonic Signed Spike (CSS) coding scheme. This method incorporates non-linearity into the encoding process by weighting spikes at each step of neural computation, thereby increasing the information encoded in spikes. We identify the temporal coupling phenomenon arising from weighted spikes and introduce negative spikes along with a Ternary Self-Amplifying (TSA) neuron model to mitigate the issue. A one-step silent period is implemented during neural computation, achieving high accuracy with low latency. We apply the proposed methods to directly convert full-precision ANNs and evaluate performance on CIFAR-10 and ImageNet datasets. Our experimental results demonstrate that the CSS coding scheme effectively compresses time steps for coding and reduces inference latency with minimal conversion loss.
Supplementary Material: pdf
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10929
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview