A Novel Two-level Causal Inference Framework for On-road Vehicle Quality Issues DiagnosisDownload PDF

03 Oct 2022 (modified: 05 May 2023)CML4ImpactReaders: Everyone
Keywords: Causal inference, causal treatment analysis, on-road vehicle quality diagnosis
Abstract: In the automotive industry, the full cycle of managing in-use vehicle quality issues can take weeks to investigate. The process involves isolating root causes, defining and implementing appropriate treatments, and refining treatments if needed. The main pain-point is the lack of a systematic method to identify causal relationships, evaluate treatment effectiveness, and direct the next actionable treatment if the current treatment was deemed ineffective. This paper will show how we leverage causal Machine Learning (ML) to speed up such processes. A real-word data set collected from on-road vehicles will be used to demonstrate the proposed framework. Open challenges for vehicle quality applications will also be discussed.
0 Replies