Global Convergence and Stability of Stochastic Gradient DescentDownload PDF


Sep 29, 2021 (edited Oct 04, 2021)ICLR 2022 Conference Blind SubmissionReaders: Everyone
  • Keywords: Stochastic Gradient Descent, Nonconvexity, Noise Model, Global Convergence, Stability
  • Abstract: In machine learning, stochastic gradient descent (SGD) is widely deployed to train models using highly non-convex objectives with equally complex noise models. Unfortunately, SGD theory often makes restrictive assumptions that fail to capture the non-convexity of real problems, and almost entirely ignore the complex noise models that exist in practice. In this work, we make substantial progress on this shortcoming. First, we establish that SGD’s iterates will either globally converge to a stationary point or diverge under nearly arbitrary nonconvexity and noise models. Under a slightly more restrictive assumption on the joint behavior of the non-convexity and noise model that generalizes current assumptions in the literature, we show that the objective function cannot diverge, even if the iterates diverge. As a consequence of our results, SGD can be applied to a greater range of stochastic optimization problems with confidence about its global convergence behavior and stability.
  • One-sentence Summary: We analyze the global behavior of SGD under assumptions that are realistic to machine learning problems.
  • Supplementary Material: zip
0 Replies