Domain Adaptive Fake News Detection via Reinforcement LearningDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 19 Jun 2023WWW 2022Readers: Everyone
Abstract: With social media being a major force in information consumption, accelerated propagation of fake news has presented new challenges for platforms to distinguish between legitimate and fake news. Effective fake news detection is a non-trivial task due to the diverse nature of news domains and expensive annotation costs. In this work, we address the limitations of existing automated fake news detection models by incorporating auxiliary information (e.g., user comments and user-news interactions) into a novel reinforcement learning-based model called REinforced Adaptive Learning Fake News Detection (REAL-FND). REAL-FND exploits cross-domain and within-domain knowledge that makes it robust in a target domain, despite being trained in a different source domain. Extensive experiments on real-world datasets illustrate the effectiveness of the proposed model, especially when limited labeled data is available in the target domain.
0 Replies

Loading