Discriminatively Learning Inverse Optimal Control Models for Predicting Human IntentionsDownload PDFOpen Website

2019 (modified: 06 Nov 2022)AAMAS 2019Readers: Everyone
Abstract: More accurately inferring human intentions/goals can help robots complete collaborative human-robot tasks more safely and efficiently. Bayesian reasoning has become a popular approach for predicting the intention or goal of a partial sequence of actions/controls using a trajectory likelihood model. However, the mismatch between the training objective for these models (maximizing trajectory likelihood) and the application objective (maximizing intention likelihood) can be detrimental. In this paper, we seek to improve the goal prediction of maximum entropy inverse reinforcement learning (MaxEnt IRL) models by training to maximize goal likelihood. We demonstrate the benefits of our method on pointing task goal prediction with multiple possible goals and predicting goal based activities in the Cornell Activity Dataset (CAD-120).
0 Replies

Loading