Keywords: Deep learning, block coordinate descent, global minima, generalization error
Abstract: In this paper, we consider a block coordinate descent (BCD) algorithm for training deep neural networks and provide a new global convergence guarantee under strictly monotonically increasing activation functions. While existing works demonstrate convergence to stationary points for BCD in neural networks, our contribution is the first to prove convergence to global minima, ensuring arbitrarily small loss. We show that the loss with respect to the output layer decreases exponentially while the loss with respect to the hidden layers remains well-controlled. Additionally, we derive generalization bounds using the Rademacher complexity framework, demonstrating that BCD not only achieves strong optimization guarantees but also provides favorable generalization performance. Moreover, we propose a modified BCD algorithm with skip connections and non-negative projection, extending our convergence guarantees to ReLU activation, which are not strictly monotonic. Empirical experiments confirm our theoretical findings, showing that the BCD algorithm achieves a small loss for strictly monotonic and ReLU activations.
Supplementary Material: zip
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8895
Loading