Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation

Published: 28 Jan 2025, Last Modified: 23 Jun 2025CLeaR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Causal inference, matching, Riemannian geometry, manifold
TL;DR: We propose a novel matching method to estimate treatment effects accounting for the geometry of the confounders
Abstract: Matching is a popular approach in causal inference to estimate treatment effects by pairing treated and control units that are most similar in terms of their covariate information. However, classic matching methods completely ignore the geometry of the data manifold, which is crucial to define a meaningful distance for matching, and struggle when covariates are noisy and high-dimensional. In this work, we propose GeoMatching, a matching method to estimate treatment effects that takes into account the intrinsic data geometry induced by existing causal mechanisms among the confounding variables. First, we learn a low-dimensional, latent Riemannian manifold that accounts for uncertainty and geometry of the original input data. Second, we estimate treatment effects via matching in the latent space based on the learned latent Riemannian metric. We provide theoretical insights and empirical results in synthetic and real-world scenarios, demonstrating that GeoMatching yields more effective treatment effect estimators, even as we increase input dimensionality, in the presence of outliers, or in semi-supervised scenarios.
Publication Agreement: pdf
Submission Number: 89
Loading