A Fast Algorithm for Adaptive Private Mean EstimationDownload PDFOpen Website

2023 (modified: 16 Apr 2023)CoRR 2023Readers: Everyone
Abstract: We design an $(\varepsilon, \delta)$-differentially private algorithm to estimate the mean of a $d$-variate distribution, with unknown covariance $\Sigma$, that is adaptive to $\Sigma$. To within polylogarithmic factors, the estimator achieves optimal rates of convergence with respect to the induced Mahalanobis norm $||\cdot||_\Sigma$, takes time $\tilde{O}(n d^2)$ to compute, has near linear sample complexity for sub-Gaussian distributions, allows $\Sigma$ to be degenerate or low rank, and adaptively extends beyond sub-Gaussianity. Prior to this work, other methods required exponential computation time or the superlinear scaling $n = \Omega(d^{3/2})$ to achieve non-trivial error with respect to the norm $||\cdot||_\Sigma$.
0 Replies

Loading