Keywords: agent automation, prompt engineering, large language model
TL;DR: This study proposes an LLM-based modular agent that relies solely on screenshots and verifies its superiority with MiniWoB++ and WebShop benchmark.
Abstract: Software robots have long been used in Robotic Process Automation (RPA) to automate mundane and repetitive computer tasks. With the advent of Large Language Models (LLMs) and their advanced reasoning capabilities, these agents are now able to handle more complex or previously unseen tasks. However, LLM-based automation techniques in recent literature frequently rely on HTML source code for input or application-specific API calls for actions, limiting their applicability to specific environments. We propose an LLM-based agent that mimics human behavior in solving computer tasks. It perceives its environment solely through screenshot images, which are then converted into text for an LLM to process. By leveraging the reasoning capability of the LLM, we eliminate the need for large-scale human demonstration data typically required for model training. The agent only executes keyboard and mouse operations on Graphical User Interface (GUI), removing the need for pre-provided APIs to function. To further enhance the agent's performance in this setting, we propose a novel prompting strategy called Context-Aware Action Planning (CAAP) prompting, which enables the agent to thoroughly examine the task context from multiple perspectives. Our agent achieves an average success rate of 94.5% on MiniWoB++ and an average task score of 62.3 on WebShop, outperforming all previous studies of agents that rely solely on screen images. This method demonstrates potential for broader applications, particularly for tasks requiring coordination across multiple applications on desktops or smartphones, marking a significant advancement in the field of automation agents. Codes and models are accessible at https://github.com/caap-agent/caap-agent.
Primary Area: applications to robotics, autonomy, planning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6476
Loading