-Graph: A Graph Embedding for Interpretable Time Series Clustering

Published: 01 Jan 2025, Last Modified: 15 May 2025IEEE Trans. Knowl. Data Eng. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Time series clustering poses a significant challenge with diverse applications across domains. A prominent drawback of existing solutions lies in their limited interpretability, often confined to presenting users with centroids. In addressing this gap, our work presents $k$-Graph, an unsupervised method explicitly crafted to augment interpretability in time series clustering. Leveraging a graph representation of time series subsequences, $k$-Graph constructs multiple graph representations based on different subsequence lengths. This feature accommodates variable-length time series without requiring users to predetermine subsequence lengths. Our experimental results reveal that $k$-Graph outperforms current state-of-the-art time series clustering algorithms in accuracy, while providing users with meaningful explanations and interpretations of the clustering outcomes.
Loading