DilateQuant: Accurate and Efficient Diffusion Quantization via Weight Dilation

22 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: quantization, diffusion model
TL;DR: This paper proposes a novel quantization framework for diffusion models that offers comparable accuracy and high efficiency in low-bit cases.
Abstract: Diffusion models have shown excellent performance on various image generation tasks, but the substantial computational costs and huge memory footprint hinder their low-latency applications in real-world scenarios. Quantization is a promising way to compress and accelerate models. Nevertheless, due to the wide range and time-varying activations in diffusion models, existing methods cannot maintain both accuracy and efficiency simultaneously for low-bit quantization. To tackle this issue, we propose DilateQuant, a novel quantization framework for diffusion models that offers comparable accuracy and high efficiency. Specifically, we keenly aware of numerous unsaturated in-channel weights, which can be cleverly exploited to reduce the range of activations without additional computation cost. Based on this insight, we propose Weight Dilation (WD) that maximally dilates the unsaturated in-channel weights to a constrained range through a mathematically equivalent scaling. WD costlessly absorbs the activation quantization errors into weight quantization. The range of activations decreases, which makes activations quantization easy. The range of weights remains constant, which makes model easy to converge in training stage. Considering the temporal network leads to time-varying activations, we design a Temporal Parallel Quantizer (TPQ), which sets time-step quantization parameters and supports parallel quantization for different time steps, significantly improving the performance and reducing time cost. To further enhance performance while preserving efficiency, we introduce a Block-wise Knowledge Distillation (BKD) to align the quantized models with the full-precision models at a block level. The simultaneous training of time-step quantization parameters and weights minimizes the time required, and the shorter backpropagation paths decreases the memory footprint of the quantization process. Extensive experiments demonstrate that DilateQuant significantly outperforms existing methods in terms of accuracy and efficiency.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2486
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview