Private Distribution Learning with Public Data: The View from Sample Compression

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 spotlightEveryoneRevisionsBibTeX
Keywords: differential privacy, distribution learning, gaussians, mixture of gaussians, compression schemes, robust compression schemes, privacy
TL;DR: We connect public-private distribution learning to sample compression and list learning, which yields flexible ways to prove new upper and lower bounds on sample complexity.
Abstract: We study the problem of private distribution learning with access to public data. In this setup, which we refer to as *public-private learning*, the learner is given public and private samples drawn from an unknown distribution $p$ belonging to a class $\mathcal Q$, with the goal of outputting an estimate of $p$ while adhering to privacy constraints (here, pure differential privacy) only with respect to the private samples. We show that the public-private learnability of a class $\mathcal Q$ is connected to the existence of a sample compression scheme for $\mathcal Q$, as well as to an intermediate notion we refer to as \emph{list learning}. Leveraging this connection: (1) approximately recovers previous results on Gaussians over $\mathbb R^d$; and (2) leads to new ones, including sample complexity upper bounds for arbitrary $k$-mixtures of Gaussians over $\mathbb R^d$, results for agnostic and distribution-shift resistant learners, as well as closure properties for public-private learnability under taking mixtures and products of distributions. Finally, via the connection to list learning, we show that for Gaussians in $\mathbb R^d$, at least $d$ public samples are necessary for private learnability, which is close to the known upper bound of $d+1$ public samples.
Submission Number: 7033
Loading