Generalized Mm, r-Network: A Case for Fixed Message DimensionsDownload PDFOpen Website

2020 (modified: 07 Nov 2022)IEEE Communications Letters 2020Readers: Everyone
Abstract: In this letter, we first present a class of networks named <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Generalized</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${{M}}_{{ \textit {m, r}}}$ </tex-math></inline-formula> <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-Network</i> for every integer <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${m} \geq 2$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\forall {r} \in \{0, 1,\ldots, {m}-1\}$ </tex-math></inline-formula> and we show that every network of this class admits a vector linear solution if and only if the message dimension is an integer multiple of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${m}$ </tex-math></inline-formula> . We show that the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Generalized</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula> <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-Network</i> presented in the work of Das and Rai and the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Dim-</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${m}$ </tex-math></inline-formula> <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Network</i> introduced in the work of Connelly and Zeger which are generalizations to the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula> -Network can be considered as special cases of Generalized <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${M}_{\textit {m, r}}$ </tex-math></inline-formula> -Network for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${r}=1$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${r}={m}-1$ </tex-math></inline-formula> respectively. Then we focus on a problem induced by depending on integer multiples of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${m}$ </tex-math></inline-formula> as message dimensions to achieve the linear coding capacity in the class of Generalized <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${M}_{\textit {m, r}}$ </tex-math></inline-formula> (proven to be equal to 1). We note that for large values of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${m}$ </tex-math></inline-formula> , packet sizes will grow beyond feasible thresholds in real-world networks. This motivates us to examine the capacity of the network in the case of fixed message dimensions. A study on the contrast among the impacts of fixed message dimensions in different networks of class <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${M}_{\textit {m, r}}$ </tex-math></inline-formula> -Network highlights the importance of the examined problem. In addition to complete/partial solutions obtained for different networks of the class Generalized <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${M}_{\textit {m, r}}$ </tex-math></inline-formula> -Network, our studies pose some open problems which make the Generalized <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${M}_{\textit {m, r}}$ </tex-math></inline-formula> -Network an attractive topic for further research.
0 Replies

Loading