Efficient and Accurate Non-exhaustive Pattern-Based Change Detection in Dynamic NetworksOpen Website

2019 (modified: 13 Jan 2022)DS 2019Readers: Everyone
Abstract: Pattern-based change detectors (PBCDs) are non-parametric unsupervised change detection methods that are based on observed changes in sets of frequent patterns over time. In this paper we study PBCDs for dynamic networks; that is, graphs that change over time, represented as a stream of snapshots. Accurate PBCDs rely on exhaustively mining sets of patterns on which a change detection step is performed. Exhaustive mining, however, has worst case exponential time complexity, rendering this class of algorithms inefficient in practice. Therefore, in this paper we propose non-exhaustive PBCDs for dynamic networks. The algorithm we propose prunes the search space following a beam-search approach. The results obtained on real-world and synthetic dynamic networks, show that this approach is surprisingly effective in both increasing the efficiency of the mining step as in achieving higher detection accuracy, compared with state-of-the-art approaches.
0 Replies

Loading