CircuitNet 2.0: An Advanced Dataset for Promoting Machine Learning Innovations in Realistic Chip Design Environment

Published: 16 Jan 2024, Last Modified: 08 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Chip Design, Machine Learning, Dataset
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
Abstract: Integrated circuits or chips are key to enable computing in modern industry. Designing a chip relies on human experts to produce chip data through professional electronic design automation (EDA) software and complicated procedures. Nowadays, prompted by the wide variety of machine learning (ML) datasets, we have witnessed great advancement of ML algorithms in computer vision, natural language processing, and other fields. However, in chip design, high human workload and data sensitivity cause the lack of public datasets, which hinders the progress of ML development for EDA. To this end, we introduce an advanced large-scale dataset, CircuitNet 2.0, which targets promoting ML innovations in a realistic chip design environment. In order to approach the realistic chip design space, we collect more than 10,000 samples with a variety of chip designs (e.g., CPU, GPU, and AI Chip). All the designs are conducted through complete commercial design flows in a widely-used technology node, 14nm FinFET. We collect comprehensive data, including routability, timing, and power, from the design flow to support versatile ML tasks in EDA. Besides, we also introduce some realistic ML tasks with CircuitNet 2.0 to verify the potential for boosting innovations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: datasets and benchmarks
Submission Number: 7365