Abstract: Deep learning-based solutions for the ill-posed problem of Monocular Depth Estimation (MDE) from 2D color images have shown potential in recent years, spurring a very active field of research. Most state-of-the-art proposals focus on solving the problem in the context of automotive advanced driver assistance and/or autonomous driving systems. While presenting their own complexities and challenges, the vast majority of road environments exhibit a number of commonalities amongst themselves. The aerial domain in which modern Unmanned Aerial Vehicles (UAVs) operate is significantly different and features a large variety of possible scenes based on the specific mission carried out. The increasing number of applications for UAVs could benefit from more advanced learning-based MDE solutions for recovering 3D geometric information from the scene. In this paper, we conduct a study of existing research on the topic of MDE specifically tailored for aerial views, as well as presenting the datasets and tools currently supporting such research, high-lighting the challenges that remain. To the best of our knowledge, this is the first survey covering this field.
Loading