CompassDock: Comprehensive Accurate Assessment Approach for Deep Learning-Based Molecular Docking in Inference and Fine-Tuning
Keywords: Compass, DL-based Molecular Docking, LAN-MSE, Favorable Physico-chemical & Bioactivity Features
TL;DR: Comprehensive and Accurate Assessment Method for Deep Learning-Based Molecular Docking in Inference and Fine-Tuning
Abstract: Datasets used for molecular docking, such as PDBBind, contain technical variability - they are noisy. Although the origins of the noise have been discussed , a comprehensive analysis of physical, chemical, and bioactivity characteristics of the datasets is still lacking. To address this gap, we introduce the Compass. Compass integrates two key components: PoseCheck, which examines ligand strain energy, protein-ligand steric clashes, and interactions, and AA-Score, a new empirical scoring function for calculating binding affinity energy. Together, these form a unified workflow that assesses both the physical/chemical properties and bioactivity favorability of ligands and protein-ligand interactions. Our analysis of the PDBBind dataset using Compass reveals substantial noise in the ground truth data. Additionally, we propose CompassDock, which incorporates the Compass module with DiffDock, the state-of-the-art deep learning-based molecular docking method, to enable accurate assessment of docked ligands during inference. Finally, we present a new paradigm for enhancing molecular docking model performance by fine-tuning with Compass Scores, which encompass binding affinity energy, strain energy, and the number of steric clashes identified by Compass. Our results show that, while fine-tuning without Compass improves the percentage of docked poses with RMSD < 2Å, it leads to a decrease in physical/chemical and bioactivity favorability. In contrast, fine-tuning with Compass shows a limited improvement in RMSD < 2Å but enhances the physical/chemical and bioactivity favorability of the ligand conformation. The source code is available at https://github.com/anonym8171iclr2025/iclr_2025_paperid_8171.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8171
Loading