Encoder-Decoder Based CNN Structure for Microscopic Image Identification

Published: 01 Jan 2020, Last Modified: 30 Apr 2025ICONIP (1) 2020EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The significant development of classifiers has made object detection and classification by using neural networks more effective and more straightforward. Unfortunately, there are images where these operations are still difficult due to the overlap of objects or very blurred contours. An example is images obtained from various microscopes, where bacteria or other biological structures can merge, or even have different shapes. To this end, we propose a novel solution based on convolutional auto-encoders and additional two-dimensional image processing techniques to achieve better efficiency in the detection and classification of small objects in such images. In our research, we have included elements such as very weak contours of shapes that may result from the merging of biological objects. The presented method was compared with others, such as a faster recurrent convolutional neural network to indicate the advantages of the proposed solution.
Loading