Abstract: Fine-grained urban flow inference (FUFI) is crucial for traffic management, as it infers high-resolution urban flow maps from coarse-grained observations. Existing FUFI methods typically focus on a single city and rely on comprehensive training with large-scale datasets to achieve precise inferences. However, data availability in developing cities may be limited, posing challenges to the development of well-performing models. To address this issue, we propose cross-city fine-grained urban flow inference, which aims to transfer spatio-temporal knowledge from data-rich cities to data-scarce areas using meta-transfer learning. This paper devises a Spatio-Temporal Deviation Alignment (STDA) framework to mitigate spatio-temporal distribution deviations and urban structural deviations between multiple source cities and the target city. Furthermore, STDA presents a cross-city normalization method that adaptively combines batch and instance normalization to maintain consistency between city-variant and city-invariant features. Besides, we design an urban structure alignment module to align spatial topological differences across cities. STDA effectively reduces distribution and structural deviations among different datasets while avoiding negative transfer. Extensive experiments conducted on three real-world datasets demonstrate that STDA consistently outperforms state-of-the-art baselines.
External IDs:dblp:journals/tkde/YangLXNZZZG25
Loading