$\mathtt {RE\text{- }Tagger}$: A Light-Weight Real-Estate Image ClassifierOpen Website

Published: 01 Jan 2022, Last Modified: 12 May 2023ECML/PKDD (6) 2022Readers: Everyone
Abstract: Real-estate image tagging is one of the essential use-cases to save efforts involved in manual annotation and enhance the user experience. This paper proposes an end-to-end pipeline (referred to as $$\mathtt {RE\text{- }Tagger}$$ ) for the real-estate image classification problem. We present a two-stage transfer learning approach using custom InceptionV3 architecture to classify images into different categories (i.e., bedroom, bathroom, kitchen, balcony, hall, and others). Finally, we released the application as REST API hosted as a web application running on 2 cores machine with 2 GB RAM.
0 Replies

Loading