Social Bias Evaluation for Large Language Models Requires Prompt Variations

ACL ARR 2025 February Submission3572 Authors

15 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Warning: This paper contains examples of stereotypes and biases. Large Language Models (LLMs) exhibit considerable social biases, and various studies have tried to evaluate and mitigate these biases accurately. Previous studies use downstream tasks to examine the degree of social biases for evaluation and mitigation. While the output of LLMs highly depends on prompts, prior works evaluating and mitigating bias have often relied on a limited variety of prompts. In this paper, we investigate the sensitivity of LLMs when changing prompt variations (task instruction, few-shot examples, debias-prompt) by analyzing task performance and social bias of LLMs. Our experimental results reveal LLM rankings fluctuate across prompts for both task performance and social bias. We also confirmed that the impact of format changes can differ for each bias category. Performance improvement from prompt settings may not result in reduced bias. Moreover, the ambiguity of instances is a common factor in LLM sensitivity to prompts across advanced LLMs. We recommend using diverse prompts, as in this study, to compare the effects of prompts on social bias in LLMs. Our code will be publicly available after acceptance.
Paper Type: Long
Research Area: Ethics, Bias, and Fairness
Research Area Keywords: model bias/fairness evaluation
Contribution Types: Model analysis & interpretability, Position papers
Languages Studied: English
Submission Number: 3572
Loading