Abstract: The rise of large language models (LLMs) has revolutionized the way humans interact with artificial intelligence systems. However, their reliability in sensitive applications—such as personal consultations or clinical decision-making—remains limited. A critical shortfall lies in LLMs’ inherent lack of interactivity: these models generate responses even when essential context or domain-specific knowledge is absent, risking inaccurate or misleading outputs. A potential approach to mitigate this issue is to enable LLMs to pose clarifying questions, thereby uncovering the missing information required to provide accurate responses. However, previous methods often tend to greedily prompt LLMs to ask questions. This burdens the user to respond to potentially irrelevant questions and makes the system less flexible. In this paper, we introduce LaMSeI (Language Model with Selective Interaction) method, which enhances LLMs’ ability to judge when interaction is necessary under ambiguous or incomplete contexts. The motivation of LaMSeI is to measure the level of LLMs’ uncertainty about the user query, and interacts with user only when the uncertainty is high. Additionally, we incorporate active learning techniques to select the most informative questions from question candidates, for effectively uncovering the missing context. Our empirical studies, across various challenging question answering benchmarks, where LLMs are posed queries with incomplete context, demonstrate the effectiveness of LaMSeI. The method improves answer accuracy from 31.9% to 50.9%, outperforming other leading question-answering frameworks. Moreover, in experiments involving human participants, LaMSeI consistently generates answers superior to or comparable to baselines in more than 82% of the cases. Moreover, we verify the performance of LaMSeI on various LLMs, such as LLAMA2, LLAMA3, Vicuna and GPT-3.5, highlighting its capability to improve interactive language models.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Li_Dong1
Submission Number: 4540
Loading