Sequence models for continuous cell cycle stage prediction from brightfield images

Published: 27 Mar 2025, Last Modified: 28 May 2025MIDL 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Cell cycle prediction, label-free microscopy, sequence-models, Mamba
TL;DR: Sequence models for continuous cell cycle stage prediction from brightfield images
Abstract: Understanding cell cycle dynamics is crucial for studying biological processes such as growth, development and disease progression. While fluorescent protein reporters like the Fucci system allow live monitoring of cell cycle phases, they require genetic engineering and occupy additional fluorescence channels, limiting broader applicability in complex experiments. In this study, we conduct a comprehensive evaluation of deep learning methods for predicting continuous Fucci signals using non-fluorescence brightfield imaging, a widely available label-free modality. To that end, we generated a large dataset of 1.3 M images of dividing RPE1 cells with full cell cycle trajectories to quantitatively compare the predictive performance of distinct model categories including single time-frame models, causal state space models and bidirectional transformer models. We show that both causal and transformer-based models significantly outperform single- and fixed frame approaches, enabling the prediction of visually imperceptible transitions like G1/S within 1h resolution. Our findings underscore the importance of sequence models for accurate predictions of cell cycle dynamics and highlight their potential for label-free imaging.
Primary Subject Area: Unsupervised Learning and Representation Learning
Secondary Subject Area: Image Acquisition and Reconstruction
Paper Type: Methodological Development
Registration Requirement: Yes
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., All authors and co-authors are correctly listed with proper spelling and avoid Unicode characters., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 241
Loading