How Fast You Will Drive? Predicting Speed of Customized Paths Based on Deep Neural Networks. Download PDF

12 May 2023OpenReview Archive Direct UploadReaders: Everyone
Abstract: Customized path-based speed prediction is an eventful tool for congestion avoidance, route optimization and travel time prediction for navigation apps, cab-hailing companies and autonomous vehicles. Traditionally, the speed prediction algorithms are based on road segments and can only support several main roads. Path-based speed prediction is very challenging since the speed is always changing in different path locations and is jointly affected by lots of complicated factors. This article presents a novel deep learning framework for customized path-based speed prediction. A Path-based Speed Prediction Neural Network (PSPNN) is designed to achieve speed predictions for a given path and attributes information. A hierarchical Convolutional Neural Network (CNN) and deep Bidirectional Long Short-Term Memory (Bi-LSTM) structure for different kinds of feature extraction are applied for multiple levels: the path cell, sub-path and the whole path. The method narrows down the prediction unit from road segments to customized path cells (mean length: 59.52m) and achieves a mean absolute error (MAE) of 1.94 m/s and Mean Absolute Percentage Error (MAPE) of 18.14%, showing the potential of serving rigorous data-driven applications. So far, PSPNN is the first made-to-order path-based speed prediction algorithm and can help both travelers and managers to obtain large-scale bespoke paths speed information in advance.
0 Replies

Loading