Attention-Residual Network with CNN for Rumor DetectionOpen Website

2019 (modified: 17 Apr 2023)CIKM 2019Readers: Everyone
Abstract: Wide dissemination of unverified claims has negative influence on social lives. Rumors are easy to emerge and spread in the crowds especially in Online Social Network (OSN), due to its openness and extensive amount of users. Therefore, rumor detection in OSN is a very challenging and urgent issue. In this paper, we propose an Attention-Residual network combined with CNN (ARC), which is based on the content features for rumor detection. First, we build a data encoding model based on word-level data for contextual feature representation. Second, we propose a residual framework based on fine-tuned attention mechanism to capture long-range dependency. Third, we apply convolution neural network with varying window size to select important components and local features. Experiments on two twitter datasets demonstrate that the proposed model has better performance than other content-based methods both in rumor detection and early rumor verification. To the best of our knowledge, we are the first work that utilize attention model in conjunction with residual network on rumor detection.
0 Replies

Loading